Меню Рубрики

Развитие кости на месте хряща непрямой остеогенез

Непрямой остеогенез. Развитие ткани на месте гиалинового хряща.

Костная ткань развивается из мезенхимы двумя способами: прямым остеогенезом — непосредственно из мезенхимы и непрямым остеогенезом — на месте гиалинового хряща. Во втором случае сначала из мезенхимы образуется гиалиновый хрящ, а потом на месте этого гиалинового хряща уже развивается костная ткань.

Хрящевой остеогенез начинается на втором месяце эмбрионального развития в местах закладки будущих трубчатых костей и может быть представлен в виде следующих стадий:

  • 1. Развитие из мезенхимы хрящевой модели в виде гиалинового хряща, покрытого надхрящницей.
  • 2. Перихондральное окостенение — образование в диафизах между надхрящницей и гиалиновым хрящом перихондральной костной манжетки. При этом грубоволокнистая костная ткань манжетки образуется по типу прямого развития из мезенхимы. Превращение надхрящницы в надкостницу.
  • З. Дистрофия, дегенерация и обызвествление гиалинового хряща в центре диафиза будущей трубчатой кости.
  • 4. Образование точек окостенения в центре диафиза. Оно сочетается с врастанием из надкостницы кровеносных сосудов, сопровождаемых малодифференцированными клетками мезенхимной природы. Далее происходит энхондральное окостенение в центре диафиза-образование пластинчатой костной ткани, содержащей остатки обызвествленного гиалинового хряща; распространение процесса энхондрального окостенения по направлению к эпифизам и формирование костномозгового канала.
  • 5. Периостальное окостенение — замена грубоволокнистой перихондральной костной манжетки на пластинчатую костную ткань. Оно сопровождается врастанием кровеносных сосудов из надкостницы, образованием вокруг них остеонов и оппозиционным накладыванием со стороны иадкостницы слоя наружных генеральных пластинок. Далее идет смыкание периостальной кости с энхондральной и распространение процесса окостенения к эпифизам.
  • 6. Энхондральное окостенение в эпифизах. Оно заключается в появлении точек окостенения в эпифизах. Происходит врастание в дистрофически измененный гиалиновый хрящ зпифизов кровеносных сосудов и образование губчатого вещества пластинчатой костной ткани.
  • 7. Формирование эпифизарных пластинок роста. При этом между эпифизами и диафизом сохраняется две зоны гиалинового хряща, где хондроциты продолжают делиться, благодаря чему кость растет в длину. Одновременно в хрящевых эпифизарных пластинках постепенно усиливается резорбция хряща и замещение энходральной губчатой костной тканью.
  • 8. Смыкание энхондрального окостенения в эпифизах с окостенением в диафизе. Оссификация эпифизарных пластинок роста. Прекращение роста кости в длину. Этот процесс совершается относительно поздно на 18-25 году жизни человека..

Гистологический препарат. № 9
Развитие кости на месте хряща.

Хрящевой остеогенез. Срез фаланги пальца эмбриона человека.
Окраска гематоксилином и эозином. Увеличение малое и большое.
В препарате виды участки перихондрального и энхондрального окостенения (необходимо научиться различать их), первичные костномозговые полости, места дистрофии хряща. Найти: в диафизе

  1. надкостницу,
  2. перихондральную манжетку,
  3. энхондральное окостенение,
  4. с остатками обызвествленного хряща,
  5. остеобласты,
  6. остеокласты,
  7. остеоциты,
  8. первичные костномозговые полости,
  9. элементы развивающегося костного мозга в эпифизе найти:
  10. надхрящницу,
  11. неизмененный эпифизарный хрящ,
  12. хрящевые колодки,
  13. крупнопузырчатый хрящ,
  14. зоны оссификации хряща.

Методичка МГМСУ в формате PDF — скачать и читать со страницы 45 (Раздел 3.4.7. Развитие костной ткани — Непрямой остеогенез)
Методичка МГМСУ. Общая гистология.

источник

Стадия. Появляются остеокласты. Они разрушают кость. Образуются полости, куда врастает мезенхима, и по ходу сосудов, идущих по длиннику кости, остеобласты строят пластинки костной ткани. Таким образом, вокруг сосуда формируются как бы костные цилиндры, вставленные один в другой (первичные остеоны). С этого момента грубоволокнистая костная ткань заменяется на пластинчатую. Со стороны надкостницы появляются общие пластинки , охватывающие кость снаружи. В дальнейшем первичные остеоны будут разрушаться и образовываться новые генерации остеонов. Так формируются плоские кости.

Развитие ткани на месте гиалинового хряща. Начинается на 2 -м месяце эмбрионального развития в местах закладки трубчатых костей и может быть представлен в виде следующих стадий:

1. Развитие из мезенхимы хрящевой моделив виде гиалинового хряща, покрытого надхрящницей. За счет постоянного деления хрящевых клеток в надхрящнице эта модель увеличивается в размерах и принимает форму будущей кости.

2. Перихондральное окостенение, которое есть только в диафизе. В эту стадию надхрящница хрящевой модели постепенно превращается в надкостницу, которая богато васкуляризуется и в которой образуются остеобласты. Они продуцируют межклеточное вещество кости, которое минерализуется. Так образуется перихондральная костная манжетка, состоящая из грубоволокнистой костной ткани. С образованием костной манжетки питание хряща, лежащего в центре диафиза нарушается. В результате он разрушается и фагоцитируется остеокластами с образованием полостей.

3. Образование точек окостенения в центре диафиза. Из надкостницы внутрь хряща достаточно быстро прорастают кровеносные сосуды, сопровождаемые малоспециализированными клетками мезенхимной природы. Они дифференцируются в остеобласты. Остеобласты начинают синтетическую деятельность и образуют остеоны пластинчатой костной ткани, содержащей остатки обызвествленного гиалинового хряща. Так происходит эндохондральное окостенение. Образовавшись в центральной части диафиза, она распространяется в сторону эпифизов. В отличие от перихондральной кости, эндохондральная кость сразу формируется как пластинчатая.

4. Две зоны окостенения – перихондральная и эндохондральная – сливаются вместе. Одновременно перихондральная кость начинает разрушаться остеокластами и перестраивается в пластинчатую кость. В эту же стадию хрящ внутри диафиза разрушается, формируется костномозговая полость. В нее заселяются кроветворные клетки. Образуются наружные и внутренние генеральные пластинки. На этой стадии вся костная ткань диафиза представлена пластинчатой костной тканью.

5. Стадия эндохондрального (эпифизарного) окостенения. Эпифизы в это время состоят из хрящевой ткани и в них выделяют четыре зоны: 1) периферическая, или зона интактного хряща; 2) зона столбчатого хряща; 3) зона пузырчатого хряща; 4) зона разрушения хряща. Из надкостницы в хрящ эпифиза врастают кровеносные сосуды , вокруг которых концентрируются остеобласты, продуцирующие и минерализующие межклеточное вещество. В результате образуется губчатое вещество пластинчатой костной ткани. Однако эти изменения происходят только в части зоны неизменного хряща. Остальные части эпифизарного хряща остаются неминерализованными. Они образуют метаэпифизарную хрящевую пластинку роста, фактически состоящую из четырех, описанных выше зон. За счет размножения клеток этой пластинки кость растет в длину, а за счет надкостницы – в толщину.

6. Минерализация метаэпифизарной пластинки. В эту стадию (в возрасте 20-25 лет) в метаэпифизарную пластинку роста врастают кровеносные сосуды, а с ними остеобласты, которые образуют межклеточное вещество кости. Оно минерализуется. Теперь вся кость построена из костной ткани.

7. Функциональная и возрастная перестройка кости продолжается в течение всей жизни. Она заключается в постоянном разрушении старых и формировании новых остеонов, нарастании их количества и размеров при физической нагрузке и уменьшении при гипокинезии

Дата добавления: 2015-04-30 ; Просмотров: 2206 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

На 2-м месяце эмбрионального развития в местах будущих трубчатых костей закладывается из мезенхимы хрящевой зачаток, который очень быстро принимает форму будущей кости (хрящевая модель). Зачаток состоит из эмбрионального гиалинового хряща, покрытого надхрящницей. Некоторое время он растет как за счет клеток, образующихся со стороны надхрящницы, так и за счет размножения клеток во внутренних участках.

Развитие кости на месте хряща, т.е. непрямой остеогенез, начинается в области диафиза (т.н. перихондральное окостенение). Образованию перихондральной костной манжетки предшествует разрастание кровеносных сосудов. Происходит дифференцировка остеобластов, образующих в виде манжетки сначала ретикулофиброзную костную ткань (первичный центр окостенения), затем заменяющуюся на пластинчатую.

Образование костной манжетки нарушает питание хряща. Вследствие этого в центре диафизарной части хрящевого зачатка возникают дистрофические изменения. Хондроциты вакуолизируются, их ядра пикнотизируются, образуются так называемые пузырчатые хондроциты. Рост хряща в этом месте прекращается. Удлинение перихондральной костной манжетки сопровождается расширением зоны деструкции хряща и появлением остеокластов, которые очищают пути для врастающих в модель трубчатой кости кровеносных сосудов и остеобластов.

Это приводит к появлению очагов «внутреннего» эндохондрального окостенения (вторичные центры окостенения). В связи с продолжающимся ростом соседних неизмененных дистальных отделов диафиза хондроциты на границе эпифиза и диафиза собираются в продольные колонки. Таким образом, в колонке хондроцитов имеются два противоположно направленных процесса — размножение и рост в дистальных отделах диафиза и дистрофические процессы в его проксимальном отделе.

Одновременно между набухшими клетками происходит отложение минеральных солей, обусловливающее появление резкой базофилии и хрупкости хряща.

С момента разрастания сосудистой сети и появления остеобластов надхрящница перестраивается, превращаясь в надкостницу. В дальнейшем кровеносные сосуды с окружающей их мезенхимой, остеогенными клетками и остеокластами врастают через отверстия костной манжетки и входят в соприкосновение с обызвествленным хрящом. Под влиянием ферментов, выделяемых остеокластами, происходит растворение (хондролиз) обызвествленного межклеточного вещества. Диафизарный хрящ разрушается, в нем возникают удлиненные пространства, в которых «поселяются» остеоциты, образующие на поверхности оставшихся участков обызвествленного хряща костную ткань.

Процесс отложения кости внутри хрящевого зачатка получил название эндохондрального, или энхондрального, окостенения (греч. endon — внутри).

Одновременно с процессом развития энхондральной кости появляются и признаки ее разрушения остеокластами. Вследствие разрушения энхондральной костной ткани образуются еще большие полости и пространства (полости резорбции) и, наконец, возникает костномозговая полость. Из проникшей сюда мезенхимы образуется строма костного мозга, в которой поселяются стволовые клетки крови и соединительной ткани. В это же время по периферии диафиза со стороны надкостницы нарастают все новые и новые перекладины костной ткани, образующейся из надкостницы.

Разрастаясь в длину по направлению к эпифизам и увеличиваясь в толщину, они образуют плотный (компактный) слой кости. Дальнейшая организация периостальной кости протекает иначе, чем организация энхондральной костной ткани. Вокруг сосудов, которые идут по длинной оси зачатка кости из прилегающей к ним мезенхимы, на месте разрушающейся ретикулофиброзной кости начинают образовываться концентрические пластинки, состоящие из параллельно ориентированных тонких коллагеновых волокон и цементирующего межклеточного вещества. Так возникают первичные остеоны. Просвет их широк, границы пластинок нерезко контурированы. Вслед за появлением первой генерации остеонов со стороны периоста начинается развитие общих (генеральных) пластинок, окружающих кость в области диафиза.

Вслед за диафизом центры окостенения появляются в эпифизах. Этому предшествуют сначала дифференцировка хондроцитов, их гипертрофия, сменяемая ухудшением питания, дистрофией и кальцинацией. В дальнейшем отмечается процесс окостенения, подобный описанному выше. Оссификация сопровождается врастанием в эпифизы сосудов.

В промежуточной области между диафизом и эпифизами сохраняется хрящевая ткань — метафизарный хрящ, являющийся зоной роста костей в длину.

Некоторые термины из практической медицины:

· остеогенез гетеротопический (син.: остеогенез метапластический) — остеогенез, происходящий в необычном месте, например в мышцах;

· остеогенез несовершенный (osteogenesis imperfecta; син.: остеопсатироз, fragilitas ossium) — наследственная болезнь, обусловленная аномалией остеогенеза, проявляющаяся повышенной ломкостью костей, деформациями скелета на месте заживления переломов, иногда голубым цветом склер и отосклерозом; наследуется по аутосомно-доминантному, реже по аутосомно-рецессивному типу;

Дата добавления: 2015-10-19 ; просмотров: 539 | Нарушение авторских прав

источник

Источником развития костных тканей является склеротомная мезенхи­ма. Различают два способа развития костной ткани: прямой остеогистоге-нез, или развитие костной ткани непосредственно из мезенхимы,и непря­мой остеогенез,или развитие костной ткани на месте хряща(который так­же первоначально образуется из мезенхимы).

ПРЯМОЙ (МЕМБРАНОЗНЫЙ) ОСТЕОГЕНЕЗ (рис. 11.16). Он со­стоит из нескольких стадий.

1. Стадия образования остеогенного островка. Вместе образования ко­сти мезенхимные клетки теряют отростки, округляются, цитоплазма их становится базофильной. Клетки делятся митозом и образуют клеточные скопления — остеогенные островки.Одновременно из окружающей мезен­химы образуются кровеносные сосуды, и островок обильно кровоснабжает-ся (рис. 11.16я).

2. Стадия остеоида,или первичной костной ткани (остеоид показан на рис. 11.16 б). В эту стадию мезенхимные клетки дифференцируются в ос­теобласты, которые начинают продуцировать межклеточное вещество. Об­разуются оссеиновые волокна и гликозаминогликаны, протеогликаны и гликопротеины.

3. Стадия кальцификации, или минерализации межклеточного веще­ства.Осуществляется за счет деятельности остеобластов. Механизмы ми­нерализации кости описаны выше. Образуются фосфаты кальция, которые соединяются вместе и формируют кристаллы гидроксиапатита. В итоге формируется грубоволокиистая костная ткань.

4. Стадия перестройки грубоволокнистой костной ткани в плас­тинчатую.В эту стадию активируются остеокласты, которые разрушают уча­стки грубоволокнистой костной ткани (рис. 11.16 в, г). В участки разруше­ния (лакуны Хаушипа) прорастают кровеносные капилляры, вокруг которых концентрируются активные остеобласты, формирующие пластины остеона.Постепенно вся грубоволокнистая кость разрушается, а на ее месте образую i ся остеоны, т.е. развивается пластинчатая костная ткань. Из окружающей мг зенхимы образуется надкостница с двум’я слоями. Она обеспечивает регеж рацию и питание кости. Формируются также наружные и внутренние rem ральные пластины.

5. Стадия возрастных и функциональных изменений костной ткани.! эту стадию происходит постоянное разрушение стареющих и образовашк новых остеонов.

НЕПРЯМОЙ (ЭНДОХОНДРАЛЬНЫЙ) ОСТЕОГЕНЕЗ. Этот вил остеогенеза характерен для всех костей скелета. Он также протекает и не­сколько стадий (рис. 11.17, 11.18).

1. Стадия образования хря­щевоймодели будущей кости.

Из мезенхимы но общим механиз­мам хондрогенеза (см. хрящевую ткань) образуется гиалиновый хрящ, который формирует модель кости с диафизом и эпифизами. За счет постоянного деления хряще­вых клеток в надхрящнице эта мо­дель увеличивается в размерах и принимает форму будущей кости.

2. Стадия развития пери-хондральной костной манжетки и начала эндохондрального окостенения.В эту стадию над­хрящница хрящевой модели посте­пенно превращается в надкостницу, которая богато васкуляризуется ив которой образуются остеобласты с выраженной активностью щелочной фосфатазы. Они продуцируют межклеточное вещество кости, кото­рое минерализуется. Так образуется перихондральная костная манжет­ка,состоящая из грубоволокиис-той костной ткани (рис. 11.18 а). Она называется зоной перихонд-рального окостенения,которая есть только в диафизе. С образованием костной манжетки она нарушает питание хряща, лежащего кнутри, отсекая его от сосудов надкостни­цы. В результате хрящ в этих зо­нах начинает разрушаться. В нем появляются вакуолизированпые (пузырчатые) хондроциты. Однако достаточно быстро из надкостницы внутрь хряща по каналам, образованным в костной манжетке остеокластами (иногда их называют хондрок-ластами) врастают кровеносные капилляры, вместе с которыми мигрируют остеобласты. Остеобласты начинают синтетическую деятельность и обра­зуют остеоны пластинчатой кости взамен разрушающегося хряща. Так формируется зона эндохондрального окостенения, или эндохондраль-ная кость(рис. 11.18 б). Образовавшись в центральной части диафиза, oh.i распространяется в сторону эпифизов. В отличие от перихондралыюй кос ти, эндохондральная кость сразу формируется как пластинчатая кость.

3. В третью стадиюдве зоны окостенения — перихондральпая и эпдо хондральная — сливаются вместе. Одновременно перихондральпая кость начинает разрушаться остеокластами и перестраиваться в пластинчатую кость. В эту же стадию хрящ внутри диафиза разрушается, формируете;! костномозговая полость (рис. 11.18 е).

В нее заселяются кроветворны’ клетки. Образуются наружные и внутренние генеральные пластинки. Ил этой стадии вся костная ткань диафиза представлена пластинчатой костью.

4. Стадия эндохондрального окостенения эпифизов.В предыду­щей стадии основные события происходили в диафизе. Эпифизы в это вре-

мя состоят из интактной хрящевой ткани. При этом в эпифизах отчет­ливо выделяются четыре зоны (рис. 11.19, 11.20):1) перифери­ческая, или зона интактного хря­ща; 2) зона столбчатого хряща; 3) зона пузырчатого (дегенери­рующего) хряща; 4) зона разру­шения хряща.В четвертую ста­дию (вскоре после рождения ребен­ка) в хрящ эпифиза из окружающей надкостницы врастают кровеносные сосуды, вокруг которых концентри­руются остеобласты, продуцирую­щие и минерализующие межклеточ­ное вещество. Однако эти измене­ния происходят только в части зоны неизменного хряща. Осталь­ные зоны эпифизарного хряща ос­таются неминерализованными. Они образуют метаэпифизарную хря­щевую пластинку роста,факти­чески состоящую из четырех опи­санных выше зон. За счет размно­жения хрящевых клеток в этой пла­стинке кость растет в длину, а за счет надкостницы — в толщину.

5. Стадия минерализации метаэпифизарной пластинки роста. В эту стадию (в возрасте 20—25 лет) в метаэпифизарную иллшп^ роста врастают кровеносные ах’уды, а с ними остеобласты, которые образуют межклеточное вещество кости. Оно минерализуется. Теперь вся кость пост­роена из костной ткани.

6. Стадия функциональной и возрастной перестройки кости. Продолжа­ется в течение всей жизни. Суть ее заключается в постоянном разрушении старых и формировании новых остеонов, нарастании их количества и раз­меров при физической нагрузке и уменьшении при гипокинезии.

РЕГУЛЯЦИЯ МИНЕРАЛИЗАЦИИ КОСТИ И ХРЯЩА. Процесс минерализации кости и хряща находится под строгим контролем организ­ма и зависит от многих факторов. Особенно велика роль эндокринной сис­темы в регуляции образования кости. 1. Гормон паращитовидных желез паратгормон (паратирин) опосредс ванно через остеобласты стимулирует остеокласты, что ведет к резорбции ми нерального и органического компонентов кости и повышению уровня каль ция в крови. Одновременно паратирин подавляет функции остеобластов.

2. Гормон щитовидной и паращитовидных желез кальцитонин оказы­вает на клетки костной ткани противоположный эффект: тормозит актин ность остеокластов и стимулирует функцию остеобластов. В результат i этого в костной ткани стимулируются процессы остеогенеза.

3. Гормон щитовидной железы тироксин у молодых особей ускоряет об­разование и созревание новой костной ткани. У пожилых людей он вызы­вает резорбцию кости.

4. Соматотропин (гормон роста передней доли гипофиза) стимулируем остеобласты, а также деление хрящевых клеток в пластинке роста. Одно­временно он подавляет ее минерализацию.

5. Половые гормоны оказывают на развитие кости сложное влияние. С одной стороны, они стимулируют остеобласты, подавляют остеокласты и способствуют росту костей в длину. С другой стороны, резкое повышение содержания половых гормонов в крови при преждевременном половом со­зревании, вызванном опухолями половых желез и др., ведет к минерализа­ции пластинок роста в костях и низкорослости. При гииогонадизме, на­против, отмечается гигантизм.

6. Кортизол (гормон коры надпочечников) снижает синтез коллагена в костной ткани и способствует развитию остеопороза (уменьшению плот­ности костной ткани).

7. Гормон кальцитриол (витамин D3) стимулирует поглощение кальция костной тканью, биосинтез органического матрикса кости.

Витамины также играют важную роль в регуляции остеогенеза. Осо­бенно важен витамин С, который стимулирует остеобласты и синтез ими межклеточного вещества кости. Недостаток его (при котором развивается цинга) ведет к дефектам коллагеногенеза и синтеза гликозаминогликанов. Витамин А также стимулирует остеобласты и подавляет остеокласты. При его недостатке нарушается минерализация кости, а при избытке происхо­дит ее резорбция.

РЕГЕНЕРАЦИЯ КОСТНОЙ ТКАНИ. Физиологическая регенерация костной ткани заключается в постоянной перестройке кости. Она призва­на не только привести в соответствие строение кости с нагрузками на нее, но и поддерживать минеральный гомеостаз. Осуществляется за счет соче-танной деятельности остеобластов и остеокластов, которые находятся в надкостнице, эндосте и каналах остеонов. В норме большая часть их пре­бывает в состоянии покоя и активируется при инициации перестройки. Активация остеобластов ведет к одновременной активации остеокластов и наоборот (функциональное сопряжение остеобластов и остеокластов). За счет деятельности этой функциональной пары клеток происходит следующая цепь событий в кости: активация клеток, осуществляющих разруше­ние кости —> резорбция старойкости -» реверсия (переход от резорбции ко­сти к остеосигенезу)—> остеогенез.

Репаративная регенерация костной ткани происходит после перело­мов. Осуществляется за счет деятельности остеобластов, формирующихся из остеогенных (периваскулярных) клеток. Регенерация кости протекает в

1. Стадия разрушения поврежденных структур кости и деления остео­генных клеток.В эту стадию происходит разрушение поврежденных эле­ментов кости и возникает воспалительная реакция. Одновременно пери-васкулярные клетки превращаются в остеобласты, которые приступают к синтезу межклеточного вещества.

2. Стадия образования и дифференцировки тканевых структур кости.Ос­теобласты выселяются в место перелома и образуют компоненты межкле­точного вещества. Одновременно с образованием остеобластов в силу гене­тического родства формируются линии фибробластов и хондробластов, при­чем хондроидная ткань получает преимущественное развитие. В результате формируются соединительнотканнаяили (чаще) хрящевая мозоли.

3. Стадия первичной костной структуры.Хрящевая (соединительнот­канная) мозоль минерализуется и превращается в костную мозоль.Одно­временно восстанавливается сосудистая система кости.

4. Стадия окончательной перестройки регенерата.Вначале костная мо­золь состоит из грубоволокнистой костной ткани, которая потом заменя­ется на пластинчатую. Происходит резорбция избытка кости и восстанов­ление костномозговой полости.

Приведенная схема регенерации кости наблюдается при так называе­мом вторичном костном сращении,когда костные отломки недостаточно сближены и закреплены. Эта ситуация встречается в клинике наиболее ча­сто. При хорошей иммобилизации и репозиции (сопоставлении) отл.омков регенерация происходит более быстро и экономно с незначительным разру­шением костной ткани по обе стороны от перелома. При этом практически сразу образуется пластинчатая костная ткань без формирования соедини­тельнотканной и хрящевой мозолей (первичное костное сращение).

Стимуляция регенерации кости.Стимуляция регенерации костной ткани может осуществляться применением анаболических гормонов, вита­минов, препаратов ДНК, РНК и др. Она происходит также при введении в зону дефекта костных опилок, а также трансплантации аллогенной кости. Широко используется также применение метода дистракции (растяжения)кости по Г.А. Илизарову (аппарат Илизарова). Метод основан на пьезоэ­лектрическом эффектекости: ее растяжение вызывает формирование по­ложительного заряда, а сжатие — отрицательного электрического заряда. К положительному заряду тропны остеокласты, которые при растяжении и,: чинают осуществлять резорбцию костной ткани. Однако в силу coup;! жения функции остеобластов и остеокластов через определенное врем -происходит активация последних и выработка ими межклеточного вещг ства. Повторная дистракцпя ведет к повторению цикла. В результате пси ледовательных дистракций происходит постепенное новообразование и о. зревание костных структур, увеличивается межотломковый костный рек нерат, который в средней части сохраняет соединительнотканную струкг> ру, на основе которой и происходит костеобразование. Этот метод позж ляет, во-первых, эффективно лечить переломы, т.к. аппарат Илизароп. позволяет хорошо сопоставить и иммобилизировать отломки, в результа те очень рано создается возможность включения конечности в функции (нагрузка на нее ведет к активации остеобластов). Во-вторых, метод по зволяет увеличивать длину конечностей для исправления дефектов скелета.

РОСТ КОСТИ. Рост кости в длину происходит за счет метаэпифи зарной пластинки роста. Наблюдается до периода полового созревания после наступления которого половые гормоны способствуют подавлении! митозов клеток и минерализации хряща метаэпифизарной пластинки Рост кости в толщину происходит за счет надкостницы. При этом физи­ческий труд способствует размножению клеток в надкостнице, и кость ста новится толще.

ЭКТОПИЧЕСКИЙ РОСТ КОСТИ. Эктопический остеогенез.- это образование кости в нетипичных местах. Наиболее часто он имеет место при дистрофическом обызвествлении омертвевших тканей или тканей, на­ходящихся в состоянии глубокой дистрофии. При этом большое значение имеет ощелачивание среды и увеличение активности щелочной фосфата-зы, выделяемой из погибших клеток. Эктопическое костеобразование мо жет иметь место в оболочках глаза, стенках сосудов, почках, щитовидной железе, сухожилиях, поперечнополосатых мышцах, рубцах: зоне инфаркта миокарда, зонах хронического воспаления и др.

Причины эктопического остеогенеза до конца не исследованы. В усло­виях эксперимента воспроизвести его до последнего времени было доста­точно трудно. Существуют два методических приема для получения экто­пической кости: 1) трансплантация в соединительную ткань слизистой оболочки моченого пузыря; 2) трансплантация кусочка кости с убитыми костными клетками.

В настоящее время установлено, что причиной эктопического костеоб-разования является стимуляция при этом выделения индукторов остеоге­неза. Такими индукторами являются прежде всего морфогенетические бел­ки кости (МБК).Они способствуют превращению стволовых клеток РВНСТ в остеогениые клетки. В настоящее время эти белки выделены и используются для изучения эктопического остеогенеза. Их введение в РВНСТ вызывает костеобразование.

Эктопический остеогенез имеет существенное клиническое значение, т.к. приводит к нарушению функций органов, в которых происходит, и может явиться причиной смерти.

ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ХРЯЩЕВЫХ И КОСТНЫХ ТКА­НЕЙ. У молодых индивидуумов в костной ткани преобладают анаболи­ческие процессы, процессы созидания. В межклеточном веществе отмечает­ся преобладание органического компонента над минеральным. В результа­те этого кости детей гибкие, меньше подвергнуты переломам, а если тако­вые имеют место, то происходят поднадкостнично,по тину «зеленой вет­ки»,т.е. без смещения костных отломков. Максимум массы костной ткани достигается примерно к 20—25-ти годам. После этого возраста процессы резорбции костной ткани начинают преобладать над процессами костеоб-разования. С возрастом количество минеральных веществ увеличивается, они преобладают над органическими, что обусловливает повышенную ломкость костей. Этому же способствует остеонороз— разрежение костной ткани при старении. Его развитию способствуют: нарастающая атрофия половых желез и снижение в результате концентрации половых гормонов (особенно эстрогенов, поэтому у женщин часто наблюдается менопаузаль-ныйостеонороз); снижение функциональной нагрузки на кость, что ведет к активации остеокластов. У старых людей в результате остеолиза резко увеличивается диаметр гаверсовых каналов, что ведет к уменьшению об­щей массы костной ткани. Существенно нарушается заживление перело­мов костей.

Общая морфофункционалытя характеристика.Мышечные ткани пр« ставляют собой тип тканей, объединенных общей функцией — функцт сократимости. Скелетная мышечная тканьобеспечивает передвижение те.; в пространстве. Гладкая мышечная тканьприводит в движение степ к: внутренних органов и сосудов. Сердечная мышечная тканьосуществля 2 *, необходимые для сокраще­ния, и является аналогом одновременно и саркоплазматического ретикулу-ма (СПР), и Т-трубочек в исчерченной мышечной ткани (см. ниже). В ми-оците имеются также и элементы редуцированного саркоплазматического ретикулума в виде пузырьков и небольших цистерн. С ними кавеолы мо- гут иметь связи. Кавеолы СИР содержат в своей мембр.; не белки транспорта кальки: В цитоплазме гладких миоцп тов есть включения гликоген;!

11а периферии миоцитоь под их цитолеммой находят; плотные тельца,состоящие и белка а-актинина— аналоги / линий саркомеров (см. ниже) Есть две разновидности плот ных телец: 1) связанные i внутренней поверхностью илазмолеммы (сарколеммы; миоцита при помощи комплек­са адгезивных белков (винкули-на, тензина идр.). Эти плот ные тельца на самом деле представляют собой срезанные поперечно пластинки, имею­щие вид длинных непрерыв­ных ребер, которые лежат па­раллельно друг другу под сар­колеммой; 2) свободно лежа­щие в цитоплазме (саркоплазме).Лежат в виде правильной цепочки. К плотным тельцам прикрепляются актиновые и промежуточные десминовые филаменты.Последние образуют сложную трехмерную сеть в саркоплазме. Важный компонент цитоплазмы гладких миоцитов — сократительные белковые нити, или миофиламенты,образующие миофибриллы. Эти нити расположены вдоль длинной оси миоцита, а по отношению друг к другу так, что не образуют поперечной исчерченности. Тонкие актиновые миофи­ламентыодним концом прикрепляются к плотным тельцам. Они в отли­чие от скелетной мышечной ткани состоят только из белка актина (мы­шечного и немышечного), не содержат тропонинаи тропомиозинаи более многочисленны. Актиновые филаменты взаимодействуют с толстыми мио-зиновыми филаментами,образуя так называемые сократимые единицы.В отличие от миозиновых филамептов скелетной мышечной ткани миозино-вые филаменты гладких миоцитов менее стабильны, а по мнению некото­рых исследователей, молекулы миозина в состоянии покоя находятся в де-полимеризованной форме, и миозиновые филаменты организуются путем сборки непосредственно перед сокращением, вновь распадаясь после него. Поэтому в гладких мышечных тканях не формируются миофибриллы, сар-

Читайте также:  Почему после перелома пяточной кости отекает нога

комсры и отсутствует поперечная исчерченность. Сборка из молекул мио зипа толстых миозииовых филаментов происходит при инициации сокрп тения, и этот процесс, а также взаимодействие актиновых и миозиновьп филаментов активируют ионы кальция, поступающие из кальциевых депо — СПР, кавеол и митохондрий. Образующиеся сократительные единицы направлены под углом к длине миоцита.

Механизм сокращения гладких миоцитовпринципиально сходен с со кращением скелетных мышечных волокон и более подробно будет рассмот­рен ниже. Он заключается во взаимодействии актиновых и миозииовых филаментов (теория скольжения X. Хаксли),которое инициируют ионы кальция, выделяемые СПР, митохондриями и кавеолами. Под действием нервного импульса из пиноцитозных пузырьков высвобождается Са 2 ‘, ко­торый образует комплекс с кальцийсвязывающим белком кальмодулином.Комплекс «Са 2+кальмодулин»активирует фермент киназу легких цепей миозина,фосфорилирующую легкие цепи миозина. Фосфорилирование миозина придает ему способность взаимодействовать с актиновыми фила ментами. В итоге головки молекул миозина сформированных и активиро ванных миозииовых филаментов начинают взаимодействовать с активны ми центрами актиновых филамент, т.к. обладают свойством липкости Они совершают тянущие гребковые движения, скользя вдоль актиновых филамент. В результате повторяющихся гребковых движений миозииовых филамент вдоль актиновых сближаются плотные тельца, и гладкий мио цит сокращается. Промежуточные десминовые филаменты препятствуют сильной деформации клетки при ее сокращении. Для сокращения необхо­дима энергия АТФ, гидролиз которой происходит медленно, что отражает­ся на скорости сокращения.

Прекращает сокращение фермент фосфатаза миозина,отщепляющая фосфат от легких цепей миозина (дефосфорилировапие). При этом особен­ность гладких мыщц заключается в том, что не все миозиновые мостики после дефосфорилирования разрушаются: часть головок миозина остается связанной с актиновыми филаментами. Это обеспечивает длительное под­держание тонуса гладких мышц без дополнительных энергетических затрат.

Гладкие миоциты функционируют не изолированно, а формируют ми-оцитарные комплексы.Нервные окончания подходят не ко всем миоцитам. а только к одному в комплексе. Комплекс состоит из 10—12 миоцитов. В составе комплекса миоциты тесно взаимодействуют друг с другом при по­мощи десмосом и нексусов — щелевых контактов. В области нексусов ба­нальные мембраны миоцитов прерываются. Через нексусы происходит пе­редача возбуждения от одного миоцита к соседним, и в результате сокра­щением охватывается весь комплекс.

В состав миоцитарного комплекса входят несколько различающихся по функции миоцитов. 1. Сократительные миоцитыпреимущественно вы-полняют сократительные акты. 2. Секреторные миоцитысинтезируют и секретируют межклеточное вещество. 3. Миоциты-пейсмекерыгенерируют потенциал действия и передают его на соседние клетки. 4. Камбиальные(малодифференцированные) миоцитыслужат источником регенерации мы­шечной ткани.

Имея мезенхимное происхождение, гладкие миоциты генетически очень близки фибробластам и другим аналогичным клеткам-продуцентам межклеточного вещества: они способны к синтезу собственного межкле­точного вещества гладкой мышечной ткани, которое иногда рассматрива­ют как второй тканевой элемент гладкой мышечной ткани.

Регенерациягладкой мышечной ткани происходит не только за счет ма-лодифф с Р С1 щ и Р 01 шш ых клеток, но и за счет адвентициальных клеток (воз­можно, за счет перицитов), а при повреждении — за счет миофибробластовв силу их близкого генетического родства. Возможна и внутриклеточная регенерация гладких миоцитов, основанная на восстановлении органелл, их гипертрофии и гиперплазии.

МИОЭПИТЕЛИАЛЬНАЯ ТКАНЬ. Тканевым элементом этой ткани является миоэпителиоцит,или корзинчатая клетка.Источником развития этой ткани является кожная эктодерма. Органная локализация — конце­вые отделы и некоторые выводные протоки потовых, молочных, слезных, слюнных желез. Эти клетки дифференцируются из эктодермы одновремен­но с секреторными клетками. При этом миоэпителиоциты плотно приле­гают к экзокриноцитам концевых отделов.

Строение.Миоэпителиоциты имеют звездчатую форму и своими отро­стками окружают концевые отделы (рис. 12.4). В отростках есть актиновые филаменты, сборка миозииовых филаментов происходит накануне сокра­щения и активируется ионами Са 2+ , вышедшими из кальциевого депо под воздействием нервного импульса. В результате этого миофибриллы не имеют поперечной исчерчеиности. Сокращение отростков ведет к сдавле-нию концевого отдела и выведению из него секрета. Снаружи от миоэни-телиоцитов находится базальная мембрана.

Регенерация.Среди дифференцированных миоэпителиоцитов имеют­ся менее дифференцированные клетки, обладающие признаками камби­альных. За счет их митотического деления и дифференцировки в сократи­мые миоэпителиоциты происходит регенерация миоэпителиалыюй ткани. По другим сведениям, регенерация этой ткани происходит за счет камби­альных клеток многослойного эпителия, дифференцирующихся как в сек­реторные, так и в миоэпителиальные клетки.

МИОНЕЙРАЛЬНАЯ ТКАНЬ. Эта разновидность мышечных тканей входит в состав мышц радужной оболочки глаза — мышцы суживающей и мышцы расширяющей зрачок. Источником развития мионейральной тка­ни является нейроэктодерма. Структурно-функциональным элементом ми-онейральной ткани является мионейроцит,или миопигментоцит.Это одно­ядерные веретеновидные клетки. Содержат в цитоплазме гладкие миофиб-риллы, которые состоят из тонких актиновых миофиламснтов, располо­женных так же, как в гладкой мезенхимной мышечной ткани. Толстые ми-озиновые филаменты формируются при инициации сокращения ионами Са 2+ . В клетках много митохондрий и пигментных гранул. Между клетка­ми есть нексусы и десмосомы. Иннервация мионейральной, так же как и гладкой мышечной ткани, выполняется за счет вегетативной нервной сис­темы. Регенераторные свойства этой ткани не изучены.

К видоизмененным гладким миоцитам относятся также эндокринныемиоциты мышечной оболочки приносящих и выносящих артериол почеч­ных телец, секретирующие гормон ренин (юкстагломерулярные клетки).Характеризуются сильно развитым белоксинтезирующим аппаратом и ре­дуцированным сократительным аппаратом. Следует также упомянуть, что выраженной сократительной функцией обладают видоизмененные фиб-робласты — миофибробласты.

источник

Развитие костной ткани человека.

Источник развития: стволовые скелетогенные клетки

Прямой остеогенез ↓ Формирование скелетогенного островка у зародыша: преобразование мезенхимных клеток в стволовые, а затем в остеобласты. У взрослого есть источники для образования кости (стволовые клетки и предшественники остеобластов). ↓ Выработка остеобластами остеоида (коллагеновые волокна, аморфное органическое вещест-во). ↓ Синтез и выделение остеобластами фермента щелоч-ной фосфотазы и пузырьков (кавеол) с минералами и ферментами для минерализации волокон и матрикса. ↓ минерализация остеоида костным апатитом и образование ретикулофиброзной костной ткани. Непрямой остеогенез ↓ Формирование хондрогенного островка на месте будущей кос-ти. Преобразование мезенхим-ных клеток в стволовые, а затем в хондробласты ↓ Выработка хондробластами коллагеновых волокон, амор-фного вещества (гликоз-аминогликаны и другие вещества). ↓ Формирование модели кости из гиалинового хряща. ↓ Разрушение хряща остеоклас-тами и развитие остеогенных островков с остеобластами. ↓ Выработка остеобластами осте-оида ↓ Выделение остеобластами щелочной фосфатазы и других веществ для минерализации ↓ Минерализация остео-ида.Образование ретикулофиб-розной костной ткани.
Преобразование ретикулофиброзной костной ткани в пластинчатую (преимущественно после рождения).

Детализация развития костной ткани. Развитие костной ткани у эмбриона осуществляется двумя способами: непосредственно из мезенхимы (прямой остеогенез); и на месте ранее развившейся из мезенхимы хрящевой модели кости (непрямой остеогенез). Постэмбриональное развитие костной ткани происходит при физиологической регенерации. В процессе развития костной ткани образуется костный остеоцитарный дифферон: стволовые, полустволовые (преостеобласты), остеобласты, остеоциты.

Прямой остеогенез характерен при формировании плоских костей ( например, костей черепа). Он наблюдается уже в первый месяц эмбриогенеза и включает три основные стадии: 1)формирование остеогенных островков; 2)дифференцировка клеток остеогенных островков и образование органического матрикса кости (остеоида); 3)обызвествление остеоида.

1.Формирование остеогенного островка происходит путем концентрации активно размножающихся клеток мезенхимы в участке развития будущей кости.

2.При второй стадии происходит дифференцировка клеток остеогенного островка и образование органического матрикса. Клетки мезенхимы внутри остеогенного островка прекращают делиться и начинают дифференцироваться в остеобласты. Остеобласты вырабатывают органический матрикс (остеоид), включающий коллагеновые фибриллы. В основном веществе появляются мукопротеиды (остеомукоид), цементирующие волокна в одну прочную массу. Постепенно клетки оказываются замурованными в межклеточном веществе, остеобласты теряют способность размножаться и превращаться в остеоциты. В то же время из окружающей мезенхимы образуются новые генерации остеобластов, которые наращивают кость снаружи (аппозиционный рост).

3.В третью стадию остеобласты выделяют фермент щелочную фосфатазу, которая расщепляет глицерофосфаты крови на углеводные соединения и фосфорную кислоту, последняя вступает в реакцию с солями кальция, который осаждается в основном веществе и в волокнах. В матриксе происходит дефосфорилирование. Одним из посредников кальцификации является остеонектин– гликопротеин, избирательно связывающий соли кальция и фосфора с коллагеном. В результате кальцификации образуются костные перекладины или балки. Формирование кости происходит, благодаря слиянию балок в единую сеть, промежутки которой заполнены волокнистой соединительной тканью с сосудами.

Мезенхима вокруг формирующейся кости дает начало надкостнице. Сформировавшееся таким путем кость является ретикулофиброзной костной тканью и называется первичной губчатой костью. В дальнейшем эта кость в большинстве участков замещается пластинчатой костной тканью. Этот процесс иногда рассматривают как четвертую стадию остеогенеза.

Развитие кости на месте ранее образованной хрящевой модели (непрямой остеогенез). Этот вид развития кости характерен для большинства костей скелета человека (длинные и короткие трубчатые кости, позвонки, кости таза). Первоначально формируется хрящевая модель будущей кости, которая служит основой для ее развития, а в дальнейшем она разрушается и замещается костью.

Непрямой остеогенез начинается на втором месяце эмбрионального развития и заканчивается в среднем к 25 летнему возрасту.

Непрямой остеогенез включает следующие стадии: 1)образование хрящевой модели кости; 2)образование перихондральной костной манжетки; 3)образование энхондральной кости в диафизе; 4)образование энхондральной кости в эпифизе; 5)формирование эпифизарной пластинки роста в хряще.

Образование хрящевой модели кости происходит из мезенхимы в соответствии с закономерностями гистогенеза хряща. Модель хряща снаружи покрыта надхрящницей. Во вторую стадию в центре диафиза хряща, во внутреннем слое надхрящницы дифференцируются остеобласты, которые начинают продуцировать костное межклеточное вещество и формируют костную ткань поверх хряща под надхрящницей в виде манжетки (перихондральная кость). Перихондральная кость непрерывно утолщается и разрастается от центра диафиза к эпифизам. С момента появления в надхрящнице остеобластов, надхрящница заменяется надкостницей.

Ретикулофиброзная костная ткань костной манжетки в дальнейшем заменится пластинчатой костной тканью. Образование костной манжетки нарушает питание хряща. Вследствиt этого в центре диафизарной части хрящевого зачатка возникают дистрофические изменения. Хондроциты вакуолизируются, их ядра подвергаются пикнозу, образуется так называемый пузырчатый хрящ с дегенеративными хондроцитами. Перихондральная костная манжетка увеличивается в длину, а зона деструкции хряща расширяется. Остеокласты формируют пути для врастающих кровеносных сосудов в образовавшиеся при деструкции хряща полости. На границе эпифиза и диафиза хондроциты собираются в колонки, так как рост неизмененных дистальных отделов хряща продолжается. В колонке хондроцитов идут два противоположно направленных процесса: размножение и рост хряща в его дистальном отделе и дистрофические изменения вблизи кости. В околокостной зоне между набухшими клетками хряща откладываются минеральные соли, которые придают базофилию межклеточному веществу. Кровеносные сосуды с окружающей мезенхимой, остеобластами, остеокластами врастают через отверстия в костной манжетке внутрь хряща и входят в соприкосновение с обызвествленным хрящом. Остеокласты выделяют ферменты, которые растворяют обызвествленное межклеточное вещество. Диафизарный хрящ разрушается, в нем возникают удлиненные пространства, в которых на поверхности оставшихся участков обызвествленного хряща остеобласты образуют костную ткань. Процесс отложения кости внутри хрящевого зачатка получил название энхондрального. При развитии энхондральной кости одновременно идет ее разрушение остеокластами и образование костно-мозговой полости, в которую врастает мезенхима и образуется строма костного мозга, в которой появляются стволовые клетки для развития костного мозга и кроветворных клеток.

В это же время по периферии диафиза со стороны надкостницы нарастают новые перекладины костной ткани, образующиеся из надкостницы. Разрастаясь в длину по направлению к эпифизам и увеличиваясь в толщину, они образуют плотный слой кости. В дальнейшем в периостальной кости вокруг сосудов на месте разрушившейся грубоволокнистой кости начинают образовываться первичные остеоны. Они имеют широкий просвет, их границы слабо выражены. За образованием первой генерации остеонов со стороны периоста начинается развитие общих (генеральных) пластинок. Вслед за диафизом, центры окостенения появляются в эпифизах. Вначале в эпифизах идет дифференцировка хрящевых клеток, затем их гипертрофия, ухудшается питание, происходит дистрофия и кальцинация, затем отмечается процесс окостенения. Оссификация сопровождается врастанием в эпифизы сосудов. В промежуточной области между диафизом и эпифизом сохраняется хрящевая ткань в виде метаэпифизарного хряща, который является зоной роста костей в длину.

Читайте также:  Утолщается ли кость с возрастом

В метаэпифизарном хряще различают пограничную зону, зону столбчатых клеток (размножение хондроцитов).

Со временем в метаэпифизарной пластинке хряща процессы разрушения клеток начинают преобладать над процессом новообразования; хрящевая пластинка истончается и исчезает. Рост кости в длину прекращается.

Рост трубчатых костей в толщину идет за счет периоста. Этот аппозиционный рост идет до окончания формирования кости. Количество остеонов после рождения невелико, но уже к 25 годам их число значительно увеличивается.

Регенерация костной ткани.Физиологическая регенерация костных тканей и их обновление происходят медленно за счет остеогенных клеток надкостницы и остеогенных клеток в канале остеона. Посттравматическая регенерация (репаративная) протекает быстрее. Последовательность регенерации соответствует схеме остеогенеза. Процессу минерализации кости предшествует формирование органического субстрата (остеоида), в толще которого могут образоваться балки хряща (при нарушенном кровоснабжении). Оссификация в этом случае будет идти по типу непрямого остеогенеза (см. схему непрямого остеогенеза).

Вопросы для самоконтроля:

1. Из какого источника развиваются хрящевые и костные ткани?

2. Назовите функции надкостницы и надхрящницы?

3. Из каких структурных элементов складываются хрящевая и костная ткани?

4. Что является структурно- функциональной единицей пластинчатой костной ткани?

5. Назовите структурные образования компактного вещества трубчатой кости?

6. Какие клетки костной ткани принимают участие в ее построении и разрушении? Укажите их строение.

7. Какие способы остеогенеза вам известны и какие стадии в них различают?

8. Как изменяются с возрастом хрящевые и костные ткани?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8439 — | 8046 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Непрямой остеогенез. Развитие ткани на месте гиалинового хряща.

Костная ткань развивается из мезенхимы двумя способами: прямым остеогенезом — непосредственно из мезенхимы и непрямым остеогенезом — на месте гиалинового хряща. Во втором случае сначала из мезенхимы образуется гиалиновый хрящ, а потом на месте этого гиалинового хряща уже развивается костная ткань.

Хрящевой остеогенез начинается на втором месяце эмбрионального развития в местах закладки будущих трубчатых костей и может быть представлен в виде следующих стадий:

  • 1. Развитие из мезенхимы хрящевой модели в виде гиалинового хряща, покрытого надхрящницей.
  • 2. Перихондральное окостенение — образование в диафизах между надхрящницей и гиалиновым хрящом перихондральной костной манжетки. При этом грубоволокнистая костная ткань манжетки образуется по типу прямого развития из мезенхимы. Превращение надхрящницы в надкостницу.
  • З. Дистрофия, дегенерация и обызвествление гиалинового хряща в центре диафиза будущей трубчатой кости.
  • 4. Образование точек окостенения в центре диафиза. Оно сочетается с врастанием из надкостницы кровеносных сосудов, сопровождаемых малодифференцированными клетками мезенхимной природы. Далее происходит энхондральное окостенение в центре диафиза-образование пластинчатой костной ткани, содержащей остатки обызвествленного гиалинового хряща; распространение процесса энхондрального окостенения по направлению к эпифизам и формирование костномозгового канала.
  • 5. Периостальное окостенение — замена грубоволокнистой перихондральной костной манжетки на пластинчатую костную ткань. Оно сопровождается врастанием кровеносных сосудов из надкостницы, образованием вокруг них остеонов и оппозиционным накладыванием со стороны иадкостницы слоя наружных генеральных пластинок. Далее идет смыкание периостальной кости с энхондральной и распространение процесса окостенения к эпифизам.
  • 6. Энхондральное окостенение в эпифизах. Оно заключается в появлении точек окостенения в эпифизах. Происходит врастание в дистрофически измененный гиалиновый хрящ зпифизов кровеносных сосудов и образование губчатого вещества пластинчатой костной ткани.
  • 7. Формирование эпифизарных пластинок роста. При этом между эпифизами и диафизом сохраняется две зоны гиалинового хряща, где хондроциты продолжают делиться, благодаря чему кость растет в длину. Одновременно в хрящевых эпифизарных пластинках постепенно усиливается резорбция хряща и замещение энходральной губчатой костной тканью.
  • 8. Смыкание энхондрального окостенения в эпифизах с окостенением в диафизе. Оссификация эпифизарных пластинок роста. Прекращение роста кости в длину. Этот процесс совершается относительно поздно на 18-25 году жизни человека..

Гистологический препарат. № 9
Развитие кости на месте хряща.

Хрящевой остеогенез. Срез фаланги пальца эмбриона человека.
Окраска гематоксилином и эозином. Увеличение малое и большое.
В препарате виды участки перихондрального и энхондрального окостенения (необходимо научиться различать их), первичные костномозговые полости, места дистрофии хряща. Найти: в диафизе

  1. надкостницу,
  2. перихондральную манжетку,
  3. энхондральное окостенение,
  4. с остатками обызвествленного хряща,
  5. остеобласты,
  6. остеокласты,
  7. остеоциты,
  8. первичные костномозговые полости,
  9. элементы развивающегося костного мозга в эпифизе найти:
  10. надхрящницу,
  11. неизмененный эпифизарный хрящ,
  12. хрящевые колодки,
  13. крупнопузырчатый хрящ,
  14. зоны оссификации хряща.

Методичка МГМСУ в формате PDF — скачать и читать со страницы 45 (Раздел 3.4.7. Развитие костной ткани — Непрямой остеогенез)
Методичка МГМСУ. Общая гистология.

источник

Развитие костной ткани у эмбриона осуществляется двумя способами:

1) прямой остеогенез – непосредственно из мезенхимы

2) непрямой остеогенез – на месте ранее развившейся из мезенхимы хрящевой модели кости.

Прямойостеогенез–развитие кости из мезенхимы. Этим способом развивается грубоволокнистая (ретикулофиброзная) костная ткань. Характерен при формировании плоских костей (например, костей черепа). Этот процесс наблюдается в основном в течение первого месяца внутриутробного развития и протекает в четыре стадии:

образованиеостеогенного островка. Происходит очаговое размножение мезенхимных клеток и формирование в этом очаге сосудов (васкуляризация);

остеоидная стадия.Мезенхимные клеткипревращаются в остеобласты, располагающиеся снаружи островка. Остеобласты образуют межклеточное вещество, в которое сами себя замуровывают и остаются в центре островка, превращаясь в остеоциты. Снаружи образуются всё новые и новые остеобласты. Формируются костные балки;

стадия минерализации остеоида.В этустадию межклеточное вещество пропитывается солями кальция. В результате кальцификации образуются костные балки;

стадии перестройки грубоволокнистой костной ткани в пластинчатую,когда грубоволокнистая костная ткань разрушается остеокластами и на её месте с помощью остеобластов образуются костные пластинки и остеоны.

Развитие костной ткани на месте хряща (непрямой остеогенез).

Развитие костной ткани у эмбриона осуществляется двумя способами:

1) прямой остеогенез – непосредственно из мезенхимы

2) непрямой остеогенез – на месте ранее развившейся из мезенхимы хрящевой модели кости.

Непрямой остеогенез(из хрящевой модели). Сначала, на 2-м месяце эмбриогенеза в местах будущих трубчатых костей из мезенхимы склеротомов сомитов образуется хрящевой зачаток (гиалиновый хрящ, покрытый надхрящницей), который очень быстро принимает форму будущей кости. Затем в области диафиза надхрящница замещается надкостницой, питание хряща нарушается, он погибает и разрушается остеокластами и замещается грубоволокнистойкостной тканьюкостная манжетка.Затемкостная ткань замещает весь хрящ в диафизе.

В центре эпифизов ещё сохраняется нормальный гиалиновый хрящ (зона интактногохряща),однако ближе к диафизу хондроцитынабухают (зона пузырчатого хряща) и разрушаются с помощью остеокластов (зона резорбции хряща)

Позднее точки окостенения появляются в эпифизах. Эти две зоны окостенения сближаются, а между ними ещё сохраняется метафизарная хрящевая пластинка роста,за счёткоторой длительно, до 18-20 лет продолжается рост костей в длину. К 20 годам хрящевая пластинка истончается и исчезает, рост кости в длину прекращается.

Мышечные ткани: общая характеристика, классификация, строение, функция, регенерация.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма.

Классификация.В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы.

Первая подгруппа- поперечнополосатые мышечные ткани.

Вторая подгруппа – гладкие мышечные ткани.

Согласно генетической классификации (по происхождению), мышечные ткани делят на 4 типа: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 3) соматические (развиваются из миотомов сомитов мезодермы и образуют скелетную мышечную ткань); 4) целомические (развиваются из висцерального листка спланхнотома и образуют сердечную мышечную ткань). Первые два типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым.

Строение клетки мышечной ткани. Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры. Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками — актином и миозином. Именно они обеспечивают главное свойство этой структуры — сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин — темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления — пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, — меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру — определенный тип мышечной ткани. Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие — в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации — восстановления целостности ткани.

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:

1) осуществление сокращения и расслабления органов;

2) сужение и расширение просвета кровеносных и лимфатических сосудов;

3) обеспечение реакции на действие гормонов и других химических веществ;

4) высокая пластичность и связь процессов возбуждения и сокращения.

5) отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.

6) поддерживает положение тела в пространстве.

7) выполняет функцию защиты органов брюшной полости (от механических воздействий).

8) сердечная мускулатура обеспечивает ритмические сокращения сердца.

9) скелетные мышцы участвуют в актах глотания, формируют голосовые связки.

Регенерация мышечной ткани, ее возможности и формы различны в зависимости от вида этой ткани. Гладкие мышцы, клетки которых обладают митотической и амитотической активностью, при незначительных дефектах могут регенерировать достаточно полно. Значительные участки повреждения гладких мышц замещаются рубцом. Регенерация мышцы сердца человека, так же как и поперечнополосатой мускулатуры, заканчивается рубцеванием дефекта.

Сократительный аппарат поперечнополосатой (исчерченной) мышечной ткани6 ультраструктурная характеристика миофибрилл, строение и значение Т- и L- систем в развитии механизмов мышечного сокращения.

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека.

L-система –аналог гладкой ЭПС. Функция:депо ионов Ca, обеспечивает их транспорт в саркоплазме

T-система –это впячивания сарколеммы внутрь мышечного волокна по границе между светлым и темным диском.Функция:обеспечивает проведение возбуждения во внутрь мышечного волокна.

Дата добавления: 2018-06-01 ; просмотров: 423 ; ЗАКАЗАТЬ РАБОТУ

источник